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Models are an important component of climate change impact 
projections. In general, quantitative evaluations of health impacts 
require projections of 1) physical climate changes, 2) future 
socioeconomic characteristics, and 3) the relationships between 
these factors and the health outcome of interest. Uncertainties 
exist in each of these areas, and aligning the spatial and temporal 
parameters used in climate models with epidemiological data to 
assess health outcomes can be challenging. Despite these chal-
lenges, health impact modeling continues to improve, increasing 
our understanding of the quantitative impacts associated with 
climate change (for example, Melillo et al. 2014; Tamerius et al. 
2007; Post et al. 2012).1, 2, 3

A1.1 Quantitative Evaluations of Health Impacts  

Projecting Climate Change Impacts 

Climate models are used to analyze past changes in the long-term 
averages and variations in temperature, precipitation, and other 
climate indicators and to make projections of how these trends 
may change in the future. Since there is no universally accepted 
set of metrics to identify the “best” climate models, it is standard 
practice to use an ensemble (a collection of simulations from dif-
ferent models) in order to present a range of results and provide 
a measure of the certainty in the results. In addition, because 
climate model results can depend on initial conditions (the state 
of the atmosphere and ocean at the moment the modeling run 
begins), even for a single model, multiple model simulations 
can be used to similarly present a range of results and improve 
understanding of variability. Climate model outputs may require 
additional processing, such as the use of downscaling methods 
when higher resolutions are needed, or coupling to an atmo-
spheric chemistry model in order to examine and incorporate 
changes in local air quality.

Projections of climate changes are usually based on scenarios (or 
sets of assumptions) regarding how future emissions may change 
as a result of population, energy, technology, and economics. 
Over the past decade, climate change simulations were based pri-
marily on emissions scenarios developed in the Intergovernmen-
tal Panel on Climate Change (IPCC) Special Report on Emissions 
Scenarios (SRES).4 These scenarios were used as inputs to climate 
models in order to develop projections used in the Coupled Mod-
el Intercomparison Project Phase 3 (CMIP3). The global climate 

model (GCM) simulations included in CMIP use a standard exper-
imental protocol so that their outputs can be compared. The IPCC 
Fifth Assessment Report5 drew upon model simulations from 
the Coupled Model Intercomparison Project Phase 5 (CMIP5), 
which collected simulation data from more recent models, used 
Representative Concentration Pathways (RCPs) in place of SRES 
scenarios, and incorporated updated historical forcing trends and 
other exogenous model inputs. 

CMIP5 contains approximately 60 climate representations from 
28 different modeling centers.6 The spatial resolution of most 
model grid cells is about 1° to 2° of latitude and longitude, or 
about 60 to 130 square miles. CMIP5 experiments simulate both 

a. the 20th century climate using the best available estimates 
of the temporal variations in external forcing factors (such 
as greenhouse gas concentrations, solar output, and volca-
nic aerosol concentrations); and

b. the 21st century climate based on future greenhouse gas 
concentration pathways resulting from various emissions 
scenarios.

Four RCP emissions pathways were used for the CMIP5 simula-
tions: RCP2.6, RCP4.5, RCP6.0, and RCP8.5. These pathways are 
named according to the increase in radiative forcing (a measure 
of the total change in Earth’s energy balance) projected for that 
pathway in the year 2100 relative to preindustrial levels, mea-
sured in Watts per square meter (Wm−2). For example, RCP6.0 
projects that the end-of-century radiative forcing increase will 
be 6.0 Wm−2 above preindustrial levels. The range of simulated 
global average surface temperature changes under both SRES and 
RCPs is shown in Figure 1. 

Projecting Socioeconomic Development 

Along with the RCPs, used to provide a range of possible 
future greenhouse gas concentrations for climate models, the 
modeling of climate change impacts can be improved by ac-
knowledging scenarios that describe future societal character-
istics. For the IPCC’s Fifth Assessment Report,5 impact model-
ers discussed the use of new scenarios constructed from three 
building blocks:
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• Representative Concentration Pathways (RCPs)

• Shared Socioeconomic Pathways (SSPs) 

• Shared Climate Policy Assumptions (SPAs) 

Shared Socioeconomic Pathways define plausible alterna-
tive states of global human and natural societies at a macro 
scale, including qualitative and quantitative factors such as 
demographic, political, social, cultural, institutional, lifestyle, 
economic, and technological variables and trends. Also in-
cluded are the human impacts on ecosystems and ecosystem 
services, such as air and water quality.7, 8, 9 

As with the IPCC Fifth Assessment Report, SSPs are not 
explicitly used in the analyses highlighted in this assessment. 
However, because these scenarios are likely to be used by the 
impacts modeling community over the next few years, placing 
the approach taken in this assessment in context is a valuable 
exercise. 

Five reference SSPs, referred to as SSP1 through SSP5,9 de-
scribe challenges to adaptation (efforts to adapt to climate 
change) and mitigation (efforts to reduce the amount of 
climate change) that change over time irrespective of climate 
change.7, 8, 9 Although the SSPs describe broad-scale global 
trends across multiple sectors, these trends are relevant to 
projections of health impacts in the United States; trends 
within each SSP represent different challenges for maintaining 
and improving the health of Americans. For example, future 
vulnerability to changing concentrations of air pollutants, 
particularly ozone, will in part depend on demographics, ur-
banization, policies to control air pollutants, and hemispheric 
transport of emissions from areas outside the region. 

The combination of RCP6.0 (used by most of the analyses 
highlighted in the Temperature-Related Death and Illness, Air 
Quality Impacts, Vector-Borne Diseases, and Water-Related 
Illness chapters—see Section A1.2) and the population param-
eters for the SRES B2 emissions pathway (used in the extreme 
heat and ozone analyses highlighted in Ch. 2: Temperature-Re-
lated Death and Illness and Ch. 3: Air Quality Impacts) can 
be partially mapped to the SSP2 storyline.9, 10 SSP2 depicts a 

Scenarios of Future Temperature Rise

Figure 1: Projected global average temperature rise for specific emissions pathways (left) and concentration pathways (right) relative 
to the 1901−1960 average. Shading indicates the range (5th to 95th percentile) of results from a suite of climate models. Projections 
in 2099 are indicated by the bars to the right of each panel. In all cases, temperatures are expected to rise, although the difference 
between lower and higher pathways is substantial.

The left panel shows the two main CMIP3 scenarios (SRES) used in this assessment: A2 assumes continued increases in emissions 
throughout this century, and B1 assumes significant emissions reductions beginning around 2050. The right panel shows the newer 
CMIP5 scenarios using Representative Concentration Pathways (RCPs). CMIP5 includes both lower and higher pathways than 
CMIP3. The lowest concentration pathway shown here, RCP2.6, assumes immediate and rapid reductions in emissions and would 
result in about 2.5°F of warming in this century. The highest pathway, RCP8.5, roughly similar to a continuation of the current path 
of global emissions increases, is projected to lead to more than 8°F warming by 2100, with a high-end possibility of more than 11°F. 
(Data from CMIP3, CMIP5, and NOAA NCEI). (Figure source: adapted from Melillo et al. 2014)1
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world where global health improves at an intermediate pace. 
Under SSP2, multiple factors contribute to some countries 
making slower progress in reducing health burdens, including, 
in some low-income countries, high burdens of climate-related 
diseases combined with moderate to high population growth. 
In the United States, challenges to public health infrastructure 
and health care under this socioeconomic pathway could in-
clude inadequate resources and international commitment for 
1) integrated monitoring and surveillance systems, 2) research 
on and modeling of the health risks of climate change, 3) iter-
ative management approaches, 4) training and education of 
health care and public health professionals and practitioners, 
and 5) technology development and deployment.7 

The SSPs do not include any explicit climate policy assump-
tions. This role is reserved for the Shared Climate Policy 
Assumptions (SPAs) which capture key policy attributes such 
as the goals, instruments, and obstacles of mitigation and 
adaptation measures up to the global and century scale.11 In 
this way, the SPAs provide the link between RCPs and SSPs 
by allowing for a variety of alternative socioeconomic evolu-
tionary paths to be coupled with a library of climate model 
simulations created using the RCPs. SPAs are also not used in 
the analyses highlighted in this assessment. 

Projecting Health Outcomes  

Public health officials often require information on health risks at 
relatively local geographic scales. Climate models, on the other 
hand, are better at projecting changes on national to global scales 
and over timescales of decades to centuries. Figure 2 shows two 
illustrative resolutions for eastern North American topography. 
The top figure has a grid cell resolution of 68 miles by 68 miles, 
which is comparable to high resolution global models with 
projections at a 1° latitude by 1° longitude resolution. The lower 
figure shows how the same topography would look using smaller 
grid cells with a resolution of 19 miles by 19 miles. The finer detail 
at the higher resolution (note, for example, the better represen-
tation of the elevation changes of the Appalachian Mountains) 
would potentially improve a model’s ability to provide local 
information, as temperature, winds, and other features of the 
model simulation are all influenced by topography. On the other 
hand, models with higher resolution are not necessarily better at 
capturing large-scale climate changes and weather patterns.

In addition to higher spatial resolutions, public health officials are 
also generally most interested in short-term projections of future 
conditions (for example, one to five years). This is in part due to 
the fact that these officials work in resource-constrained environ-
ments where relative priorities and associated funding decisions 
can shift, often quickly. In addition, they provide services to popu-
lations with characteristics that are likely to change in response to 
changing economic conditions, immigration patterns, or impacts 
of extreme weather events. In this short timeframe, public health 
officials typically focus on information regarding the timing and 
magnitude of specific events or combinations of events that 

would stress existing programs and systems (for example, heat 
waves, tropical storms, wildfires, and air quality events). The one- 
to five-year information requirements of public health providers 
can contrast with the information climate modelers can develop, 
which project future conditions for timescales of decades to cen-
turies and often derive impacts in 2050 or 2100. Climate models 
provide less guidance in terms of changes in near-term impacts 
because short-term variability from natural sources such as ocean 
circulation can obscure the long-term climate trends produced by 
increasing greenhouse gas concentrations. As such, climate pro-
jections over longer time periods typically serve more as a guide 
to emerging issues and as an input to longer-range planning. 

 

Example of Increasing Spatial Resolution of 
Climate Models

Figure 2: Top: Illustration of eastern North American topography 
in a resolution of 68 miles x 68 miles (110 x 110 km). Bottom: 
Illustration of eastern North America at a resolution of 19 miles 
x 19 miles (30 x 30 km). Global climate models are constantly 
being enhanced as scientific understanding of climate improves 
and as computational power increases. For example, in 1990, the 
average model divided up the world into grid cells measuring more 
than 300 miles per side. Today, most models divide the world up 
into grid cells of about 60 to 100 miles per side, and some of the 
most recent models are able to run short simulations with grid 
cells of only 15 miles per side. Supercomputer capabilities are the 
primary limitation on grid cell size. Newer models also incorporate 
more of the physical processes and components that make up the 
Earth’s climate system. (Figure source: Melillo et al. 2014)1
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A1.2  Modeling Highlighted in the Assessment 

The four chapters that highlight modeling studies conducted 
for this assessment (Temperature-Related Death and Illness, 
Air Quality Impacts, Vector-Borne Diseases, and Water-Related 
Illness) analyzed a subset of the full CMIP5 dataset (see Table 1). 
The air quality analyses required the most intensive processing 
of the CMIP5 model output; calculating air quality changes at the 
appropriate geographic scale requires modelers to use a tech-
nique known as dynamical downscaling to generate climate data 
at the desired small-scale resolution, and then run an atmospher-
ic chemistry model, both of which are computationally intensive 
processes. Thus the ozone analysis was limited to two model–sce-
nario examples (see Table 1). By contrast, the water-related illness 
analyses examined results from 21 of the CMIP5 models, though 
only for one particular scenario. 

In general, the authors of the studies highlighted in this assess-
ment used historical data in order to calibrate their historical 
results and to improve geographic resolution. These downscaling 
approaches determine the climate signal by taking the difference 
between the modeled future and the modeled historical period 
at the grid cell resolution (often averaged over 30 years). This 
climate signal can then be added to observed historical data at a 
resolution potentially much finer than the model grid cell scale. 
For example, any given weather station might be, on average, 
cooler in the summer than the grid cell average because it is 
located next to a lake. By adding the modeled climate signal to 
the historical data from the weather station, the projected future 
temperatures can more effectively account for microclimate ef-
fects, from lakes or hills for example, that are consistent with his-
torical variation at a spatial resolution smaller than the modeled 
grid scale. More sophisticated calibrations can also adjust model 

variability to match historical variability by using a technique 
known as quantile mapping.12 

The modeling studies highlighted in this assessment use sever-
al approaches. The three different historical reference periods 
used in the highlighted studies (1985–2000, 1992–2007, and 
1976–2006) are slightly warmer than the 1971–2000 period used 
in the 2014 National Climate Assessment (NCA), by 0.3°F to 0.8°F. 
In addition, different sets of climate models were used. 

A sensitivity analysis was conducted to test for two potential im-
pacts of using different modeling approaches: the use of different 
historical reference periods and the use of different sets of CMIP5 
models. Figure 3 shows the change in temperature from the 2014 
NCA reference period (1971–2000) for three historical reference 
periods used in the studies highlighted (first column). The differ-
ences among these three historical reference periods are small 
compared with the warming projected for the middle of this 
century by the different sets of models used (second column). 
For the sets of 21, 11, and 5 models used in the studies of Vibrio/
Alexandrium species, Gambierdiscus species, and Lyme disease, 
respectively, the multi-model mean warming for the middle of 
the 21st century are within 0.5°F of each other, although the set 
of 11 models does not include a few of the cooler models and the 
set of 5 models spans a narrower range. The two models used 
in the extreme temperature study are slightly warmer than the 
mean of the entire set of models, while the single model used 
in the air quality (ozone) study is slightly cooler. However, these 
differences in mean warming among the five approaches shown 
in the second column are small compared to projected warming. 

Figure 3: A sensitivity analysis was 
conducted to test for potential impacts of 
differences in the modeling approaches 
(use of different historical reference 
periods and use of different sets of 
CMIP5 models) in the research studies 
highlighted in this assessment (see 
Research Highlights in Chapters 2, 3, 
5, and 6). The values in the first column 
are temperature changes for three 
different reference periods used in this 
assessment, relative to the 1971–2000 
reference period used in the 2014 NCA. 
The sets of values in the second column 
show future temperature changes for 
individual climate models for 2050–2059, 
relative to 1971–2000, for those studies 
that used the RCP6.0 scenario. 

From left to right, the vertical sets of 
values represent (a) 21 models used in the Vibrio/Alexandrium bacteria study (red), (b) 11 models used in the Gambierdiscus 
study (green), (c) the 5 models used in the Lyme disease study (purple), (d) the 2 models used in the extreme temperature study 
(blue), and (e) the single model used in the air quality study (orange). Each “x” represents a single model. The filled-in circle is the 
mean temperature change for all models in the column. (Figure source: NOAA NCEI / CICS-NC)

Sensitivity Analysis of Differences in Modeling Approaches
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Each modeling approach requires different input from the climate 
models. For example, the temperature mortality analysis required 
only temperature data, while the analysis in the Water-Related 
Illness chapter used sea surface temperature data. However, the 
ambient air quality modeling required temperature, precipitation, 
ventilation, and other data in order to provide boundary condi-
tions for the dynamical downscaling approach. Besides climate 
data, modeling teams also used other inputs. The main sources 

of additional data were the Integrated Climate and Land Use Sce-
narios (ICLUS) model for population projections and the Environ-
mental Benefits Mapping and Analysis Program (BenMAP) model 
for baseline mortality data, which were used for the extreme 
temperature and air quality modeling efforts.13, 14 The analysis 
in the Water-Related Illness chapter required salinity, light, and 
other oceanographic data not provided by the CMIP5 models. 

Table 1: See Research Highlights in Ch. 2: Temperature-Related Death and Illness; Ch. 3: Air Quality Impacts; 
Ch. 6: Water-Related Illness; Ch. 5: Vector-Borne Diseases.

Chapter Modeled 
Endpoint

Time-
frame

Temporal 
Resolution

Scenarios/
Pathways

Models Bias Correc-
tion and/or 

Downscaling

Geographic 
Scope

Climate  
Variables

Additional 
Data Inputs

Temperature- 
Related Death 
and Illness

Mortality15 2030, 2050, 
2100

30 years RCP6.0 GFDL–
CM3, 
MIROC5

Statistical  
downscaling, 
then delta 
approach

209 U.S. 
cities

Temperature 
(0–5 day lags)

BenMAP 
baseline 
mortality 
data

Air Quality Mortality/ 
Morbidity 
from chang-
es in ozone16

2030 3 years within 
11 year span

RCP6.0 GISS-E2 Dynamic  
downscaling

National Temperature, 
precipitation, 
ventilation, 
others

ICLUS pop-
ulation data, 
BenMAP 
health mod-
el, SES, air 
condition 
prevalence, 
baseline 
health 
status data

2030 11 year 
average

RCP8.5 CESM Dynamic  
downscaling

National Temperature, 
precipitation, 
ventilation, 
others

Changes in 
air exchange 
that drive 
indoor air 
quality17

2040–70 30 years SRES A2 CCSM, 
CGM3, 
GFDL, 
HadCM3

Dynamic  
downscaling 

9 U.S. cities Temperature, 
wind speed 
at 3-hour 
resolution

NA

Water-Related 
Illness

Vibrio 
bacteria 
seasonality18

2030, 2050, 
2095

Decadal 
average of 
monthly data

RCP6.0 21 CMIP5 
models

Statistical down-
scaling; mean 
and variance 
bias correction

Chesapeake 
Bay

SST (driven 
by surface air 
temperature)

NA

Vibrio 
bacteria 

geographic 
range18

2030, 2050, 
2090

Decadal 
average for 
August

RCP6.0 4 CMIP5 
models

Statistical down-
scaling; mean 
and variance 
bias correction

Alaskan 
coast

SST (driven 
by surface air 
temperature)

NA

Alexandrium 

bloom sea-
sonality18

2030, 2050, 
2095

Decadal 
average of 
monthly data

RCP6.0 21 CMIP5 
models

Statistical down-
scaling; mean 
and variance 
bias correction

Puget Sound SST (driven 
by surface air 
temperature)

NA

Growth 
rates of 3 
Gambierdis-
cus algae 
species19

2000–2099 Annual RCP6.0 11 CMIP5 
models

Mean and 
variance bias 
correction, then 
temporal  
disaggregation

Gulf of 
Mexico and 
Caribbean

SST Salinity, 
light, and 
other 
growth 
variables 

Vector-Borne 
Disease

Lyme  
disease  
onset week20

2025–2040 
and 
2065–2080

16 year 
periods

RCP2.6, 
RCP4.5, 
RCP6.0, 
RCP8.5

CESM1 
(CAM5), 
GFDL–
CM3, 
GISS–
E2–R, Had-
GEM2-ES, 
MIROC5

Statistical down-
scaling, then 
delta approach

12 U.S. 
states where 
Lyme is 
prevalent

Temp (growing 
degree days) 
precipitation, 
and saturation 
deficit (assume  
constant  
relative 
humidity)

Distance 
to coast 
in decimal 
degrees
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a 1.5°C and 4.5°C (2.7°F to 8.1°F) increase in global average 
temperature (see Figure 1).5

Climate scientists have greater confidence in predicting the 
average temperature of the whole planet than what the tem-
perature will be in any given region or locale. Global average 
temperatures may not, however, be particularly informative 
for determining health impacts at a local scale. An increase 
in global temperatures will, at local scales, result in different 
warming rates in different locations, different seasonal warm-
ing rates, different warming rates during the day compared to 
the night, and different changes in day-to-day or year-to-year 
variability. Despite these possible differences, it is highly likely 
that warming will occur almost everywhere.21 In addition to 
temperature, changes in precipitation, humidity, and weather 
systems are all important drivers of local impacts. However, 
future changes in these variables are less certain than changes 
in temperature.

Uncertainty in Public Health Surveillance and 
Monitoring 

Improvements in understanding future health impacts can result 
from better understanding current health impacts. Obtaining 
this understanding is complicated by the fact that, in the United 
States, there is no single source of health data and surveillance 
often involves acquiring, analyzing, and interpreting data from 
several sources collected using potentially different techniques 
and systems.22, 23 This is further complicated by a number of ad-
ditional limitations, including the fact that data are often incom-
plete, may not include a representative sample of all members 
of society, and rely on reporting of disease status. Estimates of 
disease patterns or trends may also vary across geographic loca-
tions.23 Understanding the surveillance and monitoring limita-
tions regarding population health data and spatial variability can 
enable more accurate estimations of the confidence in the links 
between health impacts and climate drivers, and this can be used 
to estimate uncertainty in future projections of health impacts.

Having complete socioeconomic, geographic, demographic, and 
health data at an individual level for everyone would improve 
our understanding of connections between these attributes 
and deaths and illnesses. However, such complete data are not 
available for both practical and confidentiality reasons. Man-
datory reporting, disease records, and administrative sources, 
including data from medical records or vital records, can be used 
to estimate counts of given health impacts and these counts can 
be divided by population estimates to produce health impact 
rates. Uncertainty in the data can differ depending on the type 
of population health estimate and the existing surveillance data 
source used (such as using registries versus surveys).   

In addition to uncertainty regarding the quality and usefulness of 
data, confidence in estimates of health impacts depends on the 
extent of useable data. In general, the larger the data set (larger 

The modeling approaches also included different geographic 
scales. The Water-Related Illness analyses examined individual 
bodies of water such as the Chesapeake Bay, Puget Sound, and 
the Gulf of Mexico. The vector-borne disease projections of Lyme 
disease concentrated on the 12 U.S. states where Lyme disease 
is most prevalent. The temperature mortality analysis examined 
209 U.S. cities that had sufficient data for a historical epidemiol-
ogy analysis. The ozone analysis was able to address the entire 
contiguous United States.          

A1.3 Sources of Uncertainty 

The use of the term “uncertainty” in climate assessments refers 
to a range of possible futures. Uncertainty about the future 
climate arises from the complexity of the climate system and the 
ability of models to represent timing, magnitude, and location of 
changes, as well as the difficulties in predicting the decisions that 
society will make. There is also uncertainty about how climate 
change, in combination with other stressors, will affect people 
and natural systems.1

Though quantitative evaluations of climate change impacts on 
human health are continually improving, there is always some 
degree of uncertainty when using models to gain insight into fu-
ture conditions (see Figure 4). The presence of uncertainty, or the 
fact that there is a range in potential outcomes, does not negate 
the knowledge we have, nor does it mean that actions cannot be 
taken. Everyone makes decisions, in all aspects of their life, based 
on limited knowledge or certainty about the future. Decisions 
like where to go to college or what job to take, what neighbor-
hood to live in or which restaurant to eat in, whom to befriend or 
marry, and so on are all made in light of uncertainty, which can 
sometimes be considerable. Recent years have seen considerable 
progress in the development of improved methods to describe 
and deal with uncertainty in modeling climate change impacts 
on human health (for example, Melillo et al. 2014; Tamerius et al. 
2007; Post et al. 2012).1, 2, 3 

Uncertainty in Projecting Climate Change 

Two of the key uncertainties in projecting future global tem-
peratures are 1) uncertainty about future concentrations of 
greenhouse gases, and 2) uncertainty about how much warm-
ing will occur for a given increase in greenhouse gas concen-
trations. Future concentrations depend on both future emis-
sions and how long these emissions remain in the atmosphere 
(which can vary depending on how natural systems process 
those emissions). Because of uncertainty in future greenhouse 
gas concentrations, climate modelers analyze multiple future 
emissions pathways in order to determine the range of varying 
impacts of lower emissions compared to higher emissions. In 
terms of how much warming will occur for a given increase in 
greenhouse gas concentrations, the most recent assessment 
by the IPCC found the most likely response of the climate 
system to a doubling of carbon dioxide (CO2) concentrations, 
referred to as the sensitivity in climate models, lies between 
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populations or longer time periods), and the more common the 
health condition, the more confidence there is in estimated rates, 
and changes in those rates, across time periods, demographic 
groups, or other attributes.22 

Uncertainty in Estimating Stressor-Response 
Relationships

Exposure–response or stressor–response relationships describe 
the change in the health status associated with different levels 
of exposure to a stressor or concentration of a stressor (also see 
Ch. 1: Introduction, Section 1.4). Some environmental exposures, 
such as air quality and ambient temperature, have a relatively 
direct effect on deaths and illness, which is captured in stress-
or-response relationships in epidemiological studies. For example, 
increases in temperature can affect a range of chronic illnesses 
and infectious diseases. In other situations, climate change will 
have health effects through intermediaries such as changes in 
ecological conditions like pollen distribution (causing allergies) 

and the distribution of infectious disease pathogens and vectors 
(causing vector-borne, foodborne, and waterborne infectious 
diseases). Modeling exposure–response relationships can be 
particularly challenging for outcomes involving multiple interme-
diary stressors along an exposure pathway, each of which may be 
influenced by climate change. Even for relatively direct impacts, 
the same exposure can produce different responses for different 
health outcomes. Moreover, responses for a given exposure can 
vary by location (for example, different impacts of extreme heat 
in dry areas versus humid areas) and across sub-populations (dif-
ferent socioeconomic and demographic groups). For each pairing 
of exposure and health response, the exposure–response rela-
tionship may be represented as a quantitative estimate (such as 
the increase in number of deaths for a 1°F increase in maximum 
temperature) or in a qualitative manner (such as a determination 
that increases in extreme precipitation events may increase expo-
sure to indoor molds).  

Sources of Uncertainty

Figure 4: Examples of sources of uncertainty in projecting impacts of climate change on human health. The left column 
illustrates the exposure pathway through which climate change can affect human health. The right column lists examples 
of key sources of uncertainty surrounding effects of climate change at each stage along the exposure pathway.
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In recent decades, progress has been made in modeling expo-
sure–response relationships for a wide range of climate-sensitive 
environmental exposures and health responses. For example, 
we have gained a better understanding in recent years of the 
relationships between exposure to varying temperatures, con-
centrations of ozone and fine particulate matter, and the health 
response in terms of a range of illnesses and premature death 
(for example, Samoili et al. 2005. Bobb et al. 2014; see also Ch. 
2: Temperature-Related Death and Illness and Ch. 3: Air Quality 
Impacts).24, 25 Quantitative exposure–response functions are often 
used in understanding how health risks from these exposures 
vary across locations; these are also used in modeling efforts to 
project the health impacts of climate change in specific locations. 
However, it is important to carefully consider uncertainty when 
developing and using exposure–response functions, as the envi-
ronmental processes affecting human health are complex. 

Exposure–response functions may not remain constant over time 
or space. One source of uncertainty arises from the potential that 
high levels of exposure could be associated with proportionately 
larger effects compared to low levels of exposure (non-linear-
ity, see for example Gasparrini 2014 and Burnett et al 2014).26, 

27 Further, as the nature of the exposure and the potential for 
changes in human behavior and adaptive capacity change over 
time, so can the response function change. Representing health 
response for a singular point estimate of exposure instead of a 
range of exposure values could lead to imprecise assessment of 
the health risk. The large amounts of data required for reliable 
and accurate estimation of exposure–response functions may not 
be available at suitable resolutions for all locations (for example, 
Hubbell et al 2009).28 In some cases, estimating health outcomes 
by using exposure–response functions from other locations in 
the absence of reliable locally specific exposure–response rela-
tionships introduces uncertainty (for example, Wardekker et al. 
2012).29 The exposure–response estimates may also vary within 
sub-populations in a location, being relatively high for particularly 
vulnerable communities (for example, the elderly population will 
have a higher exposure–response relationship from extreme heat 
compared to the rest of the population). 

Another challenge in characterizing the relationship between 
exposure and health impacts is determining when a relationship 
is correlative, as opposed to causative. For example, statistical 
analyses would adjust for other factors that could be influenc-
ing health outcomes, such as age, race, year, day of the week, 
insurance status, and the concentrations of other air pollutants. 
Evaluating and integrating evidence across epidemiological, 
toxicological, and controlled human exposure studies allows 
researchers to conclude whether there is a causal relationship 
between human exposure to air pollution and a given health 
outcome. As evidence mounts, as is the case for associations 
between ozone concentration and adverse health impacts,30, 31, 

32, 33, 34, 35 the hypothesis of a causal relationship is strengthened, 
and observed exposure–response associations can be used with 
greater confidence. 

Users of exposure–response relationships in risk assessments or 
disease burden projection need to carefully consider the context 
in which the estimates were derived prior to their use. Carefully 
designed meta-analyses, leveraging the information obtained 
from multiple studies, can provide summary estimates of rela-
tionships and ensure consistency in application (for example, 
Normand 1999).36

Approach to Reporting Uncertainty in Key Findings

Despite the sources of uncertainty described above, the current 
state of the science allows an examination of the likely direction 
of and trends in the health impacts of climate change. Over the 
past ten years, the models used for climate and health assess-
ments have become more useful and more accurate (for exam-
ple, Melillo et al. 2014; Tamerius et al. 2007; Post et al. 2012).1, 

2, 3 This assessment builds on that improved capability. A more 
detailed discussion of the approaches to addressing uncertainty 
from the various sources can be found in the Guide to the Report 
(Front Matter) and Appendix 4: Documenting Uncertainty: Confi-
dence and Likelihood.

Two kinds of language are used when describing the uncertainty 
associated with specific statements in this report: confidence 
language and likelihood language. Confidence in the validity of 
a finding is based on the type, amount, quality, strength, and 
consistency of evidence and the degree of expert agreement on 
the finding. Confidence is expressed qualitatively and ranges from 
low confidence (inconclusive evidence or disagreement among 
experts) to very high confidence (strong evidence and high con-
sensus). 

Likelihood language describes the likelihood of occurrence based 
on measures of uncertainty expressed probabilistically (in other 
words, based on statistical analysis of observations or model 
results or on expert judgment). Likelihood, or the probability 
of an impact, is a term that allows a quantitative estimate of 
uncertainty to be associated with projections. Thus likelihood 
statements have a specific probability associated with them, 
ranging from very unlikely (less than or equal to a 1 in 10 chance 
of the outcome occurring) to very likely (greater than or equal to 
a 9 in 10 chance). The likelihood rating does not consider severity 
of the health risk or outcome, particularly as it relates to health 
risk factors not associated with climate change, unless otherwise 
stated in the Key Finding. 

Each Key Finding includes confidence levels; where possible, sep-
arate confidence levels are reported for 1) the impact of climate 
change, 2) the resulting change in exposure or risk, and 3) the 
resulting change in health outcomes. Where projections can be 
quantified, both a confidence and likelihood level are reported. 
Determination of confidence and likelihood language involves the 
expert assessment and consensus of the chapter author teams. 
The author teams determine the appropriate level of confidence 
or likelihood by assessing the available literature, determining 
the quality and quantity of available evidence, and evaluating the 



APPENDIX 1: TECHNICAL SUPPORT DOCUMENT: MODELING FUTURE CLIMATE IMPACTS ON HUMAN HEALTH

U.S. Global Change Research Program Impacts of Climate Change on Human Health in the United States296

level of agreement across different studies. Often, the underly-
ing studies will provide their own estimates of uncertainty and 
confidence intervals. When available, these confidence intervals 
are used by the chapter authors in making their own expert 
judgments.

DOCUMENTING UNCERTAINTY

This assessment relies on two metrics to communicate the de-
gree of certainty in Key Findings. See Appendix 4: Documenting 
Uncertainty for more on assessments of likelihood and confi-
dence.

Confidence Level
Very High

Strong evidence (established 
theory, multiple sources, consistent 

results, well documented and 
accepted methods, etc.), high 

consensus

High

Moderate evidence (several sourc-
es, some consistency, methods 

vary and/or documentation limited, 
etc.), medium consensus

Medium

Suggestive evidence (a few sourc-
es, limited consistency, models 
incomplete, methods emerging, 

etc.), competing schools of thought

Low

Inconclusive evidence (limited 
sources, extrapolations, inconsis-
tent findings, poor documentation 
and/or methods not tested, etc.), 
disagreement or lack of opinions 

among experts

Likelihood
Very Likely

≥ 9 in 10

Likely

≥ 2 in 3

As Likely As Not

≈ 1 in 2

Unlikely

≤ 1 in 3

Very Unlikely

≤ 1 in 10
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